Elements of ICME Workshop
23–25 July • 8:30 am–4 pm • 2240 DCL

General Information

The objective of this course is to present to research engineers the foundations of and recent developments within integrated computational materials engineering (ICME). ICME promises designers and engineers the potential to shorten product and process development time using computational design methods. This workshop will focus on the fundamental engineering problems addressed by ICME, computational components (and their integration) of ICME, and both recent developments and open questions in the field. The target audience consists of materials researchers from academia and industry who desire a review of current practices, open questions, and cutting-edge techniques in computational materials science and its incorporation into ICME.

This example-driven three-day research workshop, hosted by Computational Science and Engineering (http://cse.illinois.edu) at the University of Illinois, will introduce researchers to the elements of integrated computational materials engineering (ICME). Lectures and tutorials will alternate with hands-on practical exercises, and participants are encouraged both to help one another, and to try applying what they have learned to their own research problems during and between sessions. Participants should bring their own laptops to work on for hands-on components—contact Neal Davis (mailto:davis68@illinois.edu) if you need special accommodation.

Who: The target audience for this research workshop is academic researchers—faculty, postdoctoral students, graduate students, and other researchers—who are interested in exploring the new field of ICME to further their insight into processes and structures.

Where: 2240 Digital Computer Laboratory, 1304 West Springfield Avenue, Urbana, Illinois

When: 23–25 July, 2014
8:30 am–4 pm

Contact: Please mail cse@cse.illinois.edu (mailto:cse@cse.illinois.edu) for more information.

Registration

<table>
<thead>
<tr>
<th>TICKET TYPE</th>
<th>REMAINING</th>
<th>SALES END</th>
<th>PRICE</th>
<th>FEE</th>
<th>QUANTITY</th>
</tr>
</thead>
<tbody>
<tr>
<td>Participant (direct payment)</td>
<td>5 Tickets</td>
<td>2d 22h 43m</td>
<td>$200.00</td>
<td>$11.99</td>
<td></td>
</tr>
<tr>
<td>Participant (CFOP payment of $200 from research funds—UIUC preferred option)</td>
<td>5 Tickets</td>
<td>2d 21h 43m</td>
<td>$0.00</td>
<td>$0.00</td>
<td></td>
</tr>
</tbody>
</table>

Tentative Agenda

Wednesday 23 July
MOTIVATION

http://uiuc-cse.github.io/icme-su14/
8:30 AM–9:30 AM Accelerated Materials Research
Santanu Chaudhuri
Applied Research Institute
University of Illinois

9:30 AM–10:45 AM ICME & Industry
Jason Sebastian
QuesTek

11:00 AM–12:00 PM Materials Project & Materials Genome Initiative
Shyue Ping Ong
Nanoengineering
University of California at San Diego

11:45 AM–12:45 PM Lunch

COMPUTATIONAL METHODS

1:00 PM–2:00 PM Knowledgebase of Interatomic Models
Ryan Elliott
Aerospace Engineering & Mechanics
University of Minnesota

2:15 PM–4:00 PM Molecular Dynamics with LAMMPS
Andrew Ferguson
Materials Science & Engineering
University of Illinois

Thursday 24 July
COMPUTATIONAL METHODS (CONTINUED)

8:30 AM–9:30 AM Introduction to Quantum Monte Carlo
David Ceperley
Physics
University of Illinois

9:30 AM–10:45 AM Quantum Monte Carlo with QWalk
Lucas Wagner
Physics
University of Illinois

11:00 AM–12:00 PM QMC Applications
Elif Ertekin
Mechanical Science & Engineering
University of Illinois

12:00 PM–1:00 PM Lunch

CHARACTERIZATION & ANALYSIS

1:00 PM–2:00 PM ICME
Bill Wilson
Frederick Seitz Materials Research Laboratory
Materials Science & Engineering
University of Illinois

3:00 PM–4:00 PM Mesoscale Computational Materials Science: What is it, why should I care, and how do I do it?
Olle Heinonen
Materials Science Division
Argonne National Laboratory

3:00 PM–4:00 PM Ab Initio Computation for Materials Characterization
Maria Chan
Center for Nanoscale Materials
Argonne National Laboratory

Friday 25 July
CHARACTERIZATION & ANALYSIS (CONTINUED)

8:30 AM–9:30 AM Nanomaterial Fabrication & Characterization
SungWoo Nam
Mechanical Science & Engineering
University of Illinois
Virtual Machine

Install VirtualBox (https://www.virtualbox.org/). **Warning:** this file is quite large, so please download it prior to the workshop. The image will be made available as soon as all data for exercises have been gathered.

LAMMPS Molecular Dynamics

LAMMPS (http://lammps.sandia.gov/) is a classical molecular dynamics code which is highly scalable and integrable with other programs such as Quantum Espresso (http://www.quantum-espresso.org/).

LAMMPS executables are available for major platforms.

QWalk Quantum Monte Carlo

QWalk (https://code.google.com/p/qwalk/) is a program developed to perform high-accuracy quantum Monte Carlo calculations of electronic structure in molecules and solids.

OVITO Open Visualization Toolkit

OVITO (http://www.ovito.org/) is a scientific visualization and analysis software for atomistic simulation data, available for all major platforms.

VMD Visual Molecular Dynamics

VMD (https://www.s.ks.uiuc.edu/Research/vmd/) is a molecular visualization program for displaying, animating, and analyzing large biomolecular systems using 3D graphics and built-in scripting.

MATLAB

MATLAB (http://www.mathworks.com/products/matlab/) is a high-level language and interactive environment for numerical computation, visualization, and programming.

We will use MATLAB for scripting. As the University has already purchased a sitewide MATLAB license (https://webstore.illinois.edu/Shop/product.aspx?zpid=1271), we will use MATLAB 8.3 R2014a.

COMSOL Multiphysics

COMSOL (http://www.comsol.com/comsol-multiphysics) is a general-purpose software platform, based on advanced numerical methods, for modeling and simulating physics-based problems.

COMSOL will provide a temporary license and installation files for the latest version at the COMSOL workshop Friday afternoon.